🔧 Processing Modules¶
🎯 Overview¶
The Animation Designer Bot's processing modules form the core logic for content generation and optimization. These modules work together to transform user input into professional motion graphics through a sophisticated pipeline of analysis, generation, and optimization.
🏗️ Module Architecture¶
graph TB
subgraph INPUT_PROCESSING["📥 Input Processing"]
USER_INPUT[👤 User Input<br/>Natural Language<br/>Campaign Brief]
AI_ANALYSIS[🤖 AI Analysis<br/>LLM Processing<br/>Intent Extraction]
CONTEXT_BUILDER[📋 Context Builder<br/>Project Configuration<br/>Brand Guidelines]
USER_INPUT --> AI_ANALYSIS
AI_ANALYSIS --> CONTEXT_BUILDER
end
subgraph CONTENT_GENERATION["🎨 Content Generation"]
JSON_GENERATOR[📄 JSON Schema Generator<br/>Python + Pydantic<br/>Schema Validation]
LAYOUT_GENERATOR[🎨 Static Layout Generator<br/>Cairo + Skia Graphics<br/>Constraint Programming]
ANIMATION_ENGINE[⚡ Animation Engine<br/>Lottie-compatible<br/>Bezier Curves + Easing]
SCENE_MANAGER[🎬 Scene State Manager<br/>Timeline Management<br/>State Machines]
CONTEXT_BUILDER --> JSON_GENERATOR
JSON_GENERATOR --> LAYOUT_GENERATOR
JSON_GENERATOR --> ANIMATION_ENGINE
LAYOUT_GENERATOR --> SCENE_MANAGER
ANIMATION_ENGINE --> SCENE_MANAGER
end
subgraph OPTIMIZATION["🧮 Optimization"]
CONSTRAINT_SOLVER[🧮 4D Constraint Solver<br/>OR-Tools + CVXPY<br/>Multi-Objective Optimization]
TIMELINE_OPTIMIZER[⏱️ Timeline Optimizer<br/>Graph Algorithms<br/>Temporal Constraints]
QUALITY_VALIDATOR[✅ Quality Validator<br/>Motion Graphics Analysis<br/>Brand Compliance]
SCENE_MANAGER --> CONSTRAINT_SOLVER
CONSTRAINT_SOLVER --> TIMELINE_OPTIMIZER
TIMELINE_OPTIMIZER --> QUALITY_VALIDATOR
end
subgraph OUTPUT_GENERATION["📤 Output Generation"]
NATRON_CONVERTER[🔄 JSON to Natron Converter<br/>Python + XML Generation<br/>Boost Serialization]
RENDER_PIPELINE[🎥 Render Pipeline<br/>Natron Integration<br/>Multi-format Output]
QUALITY_VALIDATOR --> NATRON_CONVERTER
NATRON_CONVERTER --> RENDER_PIPELINE
end
classDef input fill:#e1f5fe,stroke:#01579b
classDef generation fill:#f3e5f5,stroke:#4a148c
classDef optimization fill:#e8f5e8,stroke:#1b5e20
classDef output fill:#fff3e0,stroke:#e65100
class INPUT_PROCESSING input
class CONTENT_GENERATION generation
class OPTIMIZATION optimization
class OUTPUT_GENERATION output 📄 JSON Schema Generator¶
Core Functionality¶
The JSON Schema Generator creates structured intermediate representations that serve as the bridge between AI-generated content and the rendering pipeline.
class JSONSchemaGenerator:
def __init__(self):
self.schema_validator = PydanticValidator()
self.template_engine = TemplateEngine()
self.brand_manager = BrandManager()
def generate_schema(self, ai_content, project_config):
"""Generate JSON schema from AI content and project configuration"""
# Validate input
validated_content = self.schema_validator.validate_ai_content(ai_content)
validated_config = self.schema_validator.validate_project_config(project_config)
# Build base schema
schema = {
"version": "1.0",
"metadata": self.generate_metadata(validated_content, validated_config),
"composition": self.generate_composition(validated_config),
"assets": self.generate_assets(validated_content),
"layers": self.generate_layers(validated_content),
"animations": self.generate_animations(validated_content),
"timeline": self.generate_timeline(validated_content)
}
# Apply brand guidelines
schema = self.brand_manager.apply_brand_guidelines(schema, validated_config.brand_id)
# Validate final schema
validated_schema = self.schema_validator.validate_final_schema(schema)
return validated_schema
def generate_metadata(self, content, config):
"""Generate metadata section"""
return {
"name": content.name,
"description": content.description,
"created_at": datetime.now().isoformat(),
"project_id": config.project_id,
"brand_id": config.brand_id,
"platform": config.target_platform,
"duration": config.duration,
"resolution": config.resolution
}
def generate_composition(self, config):
"""Generate composition settings"""
return {
"width": config.resolution.width,
"height": config.resolution.height,
"frame_rate": config.frame_rate,
"duration": config.duration,
"background_color": config.background_color,
"safe_area": config.safe_area
}
Schema Validation¶
from pydantic import BaseModel, validator
from typing import List, Dict, Any, Optional
class LayerSchema(BaseModel):
id: str
name: str
type: str
z_index: int
visible: bool = True
opacity: float = 1.0
transform: Dict[str, Any]
content: Dict[str, Any]
@validator('opacity')
def validate_opacity(cls, v):
if not 0 <= v <= 1:
raise ValueError('Opacity must be between 0 and 1')
return v
@validator('z_index')
def validate_z_index(cls, v):
if v < 0:
raise ValueError('Z-index must be non-negative')
return v
class AnimationSchema(BaseModel):
id: str
layer_id: str
property: str
keyframes: List[Dict[str, Any]]
easing: str = 'linear'
duration: float
@validator('duration')
def validate_duration(cls, v):
if v <= 0:
raise ValueError('Duration must be positive')
return v
class MotionGraphicsSchema(BaseModel):
version: str
metadata: Dict[str, Any]
composition: Dict[str, Any]
assets: List[Dict[str, Any]]
layers: List[LayerSchema]
animations: List[AnimationSchema]
timeline: Dict[str, Any]
🎨 Static Layout Generator¶
Constraint-Based Design¶
The Static Layout Generator uses constraint programming to create optimal layouts that respect brand guidelines and design principles.
class StaticLayoutGenerator:
def __init__(self):
self.constraint_solver = ConstraintSolver()
self.brand_compliance = BrandComplianceChecker()
self.layout_engine = LayoutEngine()
def generate_layout(self, schema, brand_guidelines):
"""Generate static layout from schema and brand guidelines"""
# Extract layout requirements
requirements = self.extract_layout_requirements(schema)
# Apply brand constraints
constraints = self.brand_compliance.generate_constraints(brand_guidelines)
# Solve layout problem
layout_solution = self.constraint_solver.solve_layout(
requirements, constraints
)
# Generate visual layout
visual_layout = self.layout_engine.render_layout(layout_solution)
return visual_layout
def extract_layout_requirements(self, schema):
"""Extract layout requirements from schema"""
requirements = {
"elements": [],
"constraints": [],
"objectives": []
}
for layer in schema.layers:
element = {
"id": layer.id,
"type": layer.type,
"content": layer.content,
"preferred_position": layer.transform.get("position"),
"size_constraints": layer.transform.get("size"),
"priority": layer.get("priority", 1)
}
requirements["elements"].append(element)
return requirements
def solve_layout(self, requirements, constraints):
"""Solve layout using constraint programming"""
from ortools.sat.python import cp_model
model = cp_model.CpModel()
# Create variables for element positions
element_vars = {}
for element in requirements["elements"]:
element_vars[element["id"]] = {
"x": model.NewIntVar(0, 1920, f"{element['id']}_x"),
"y": model.NewIntVar(0, 1080, f"{element['id']}_y"),
"width": model.NewIntVar(10, 1920, f"{element['id']}_width"),
"height": model.NewIntVar(10, 1080, f"{element['id']}_height")
}
# Add constraints
for constraint in constraints:
self.add_constraint(model, element_vars, constraint)
# Add objectives
self.add_objectives(model, element_vars, requirements["objectives"])
# Solve
solver = cp_model.CpSolver()
status = solver.Solve(model)
if status == cp_model.OPTIMAL:
return self.extract_solution(solver, element_vars)
else:
raise LayoutError("No optimal layout solution found")
⚡ Animation Engine¶
Lottie-Compatible Animation System¶
The Animation Engine generates animations that are compatible with the Lottie standard while providing advanced easing and timing capabilities.
class AnimationEngine:
def __init__(self):
self.easing_functions = EasingFunctionLibrary()
self.keyframe_generator = KeyframeGenerator()
self.timing_engine = TimingEngine()
def generate_animation(self, animation_spec, layer_properties):
"""Generate animation from specification"""
# Parse animation specification
parsed_spec = self.parse_animation_spec(animation_spec)
# Generate keyframes
keyframes = self.keyframe_generator.generate_keyframes(
parsed_spec, layer_properties
)
# Apply easing
eased_keyframes = self.apply_easing(keyframes, parsed_spec.easing)
# Optimize timing
optimized_keyframes = self.timing_engine.optimize_timing(eased_keyframes)
return {
"keyframes": optimized_keyframes,
"duration": parsed_spec.duration,
"easing": parsed_spec.easing,
"property": parsed_spec.property
}
def generate_transition(self, from_state, to_state, transition_type, duration):
"""Generate transition between two states"""
# Analyze state differences
changes = self.calculate_state_diff(from_state, to_state)
# Generate intermediate keyframes
keyframes = self.generate_intermediate_keyframes(
changes, transition_type, duration
)
# Apply timing
timed_keyframes = self.apply_timing(keyframes, duration)
return Animation(timed_keyframes)
def apply_easing(self, keyframes, easing_type):
"""Apply easing function to keyframes"""
easing_func = self.easing_functions.get_easing_function(easing_type)
eased_keyframes = []
for i, keyframe in enumerate(keyframes):
if i == 0:
eased_keyframes.append(keyframe)
continue
prev_keyframe = keyframes[i - 1]
progress = keyframe.time / keyframes[-1].time
# Apply easing to progress
eased_progress = easing_func(progress)
# Interpolate value
eased_value = self.interpolate_value(
prev_keyframe.value,
keyframe.value,
eased_progress
)
eased_keyframes.append(Keyframe(
time=keyframe.time,
value=eased_value,
easing=easing_type
))
return eased_keyframes
Easing Function Library¶
class EasingFunctionLibrary:
def __init__(self):
self.functions = {
'linear': self.linear_ease,
'easeIn': self.ease_in,
'easeOut': self.ease_out,
'easeInOut': self.ease_in_out,
'bounce': self.bounce_ease,
'elastic': self.elastic_ease,
'back': self.back_ease
}
def linear_ease(self, t):
return t
def ease_in(self, t):
return t * t
def ease_out(self, t):
return 1 - (1 - t) * (1 - t)
def ease_in_out(self, t):
return 3 * t * t - 2 * t * t * t
def bounce_ease(self, t):
if t < 1/2.75:
return 7.5625 * t * t
elif t < 2/2.75:
t -= 1.5/2.75
return 7.5625 * t * t + 0.75
elif t < 2.5/2.75:
t -= 2.25/2.75
return 7.5625 * t * t + 0.9375
else:
t -= 2.625/2.75
return 7.5625 * t * t + 0.984375
def elastic_ease(self, t):
if t == 0 or t == 1:
return t
return -(2**(-10 * t)) * math.sin((t - 0.1) * (2 * math.pi) / 0.4) + 1
🎬 Scene State Manager¶
Timeline and State Management¶
The Scene State Manager handles the temporal aspects of motion graphics, managing element lifecycles and state transitions.
class SceneStateManager:
def __init__(self):
self.state_machine = StateMachine()
self.timeline_manager = TimelineManager()
self.element_lifecycle = ElementLifecycleManager()
def create_scene_state(self, timestamp, duration, elements):
"""Create a scene state at specific timestamp"""
state = SceneState(
timestamp=timestamp,
duration=duration,
elements=elements,
layout_constraints=[],
animation_hints=[]
)
# Add element lifecycle information
for element in elements:
lifecycle_info = self.element_lifecycle.get_lifecycle_info(element)
state.add_element_lifecycle(element.id, lifecycle_info)
return state
def manage_timeline(self, scene_states):
"""Manage timeline with multiple scene states"""
timeline = Timeline()
# Sort states by timestamp
sorted_states = sorted(scene_states, key=lambda s: s.timestamp)
# Create timeline segments
for i, state in enumerate(sorted_states):
segment = TimelineSegment(
start_time=state.timestamp,
duration=state.duration,
state=state
)
# Add transitions
if i > 0:
prev_state = sorted_states[i - 1]
transition = self.create_transition(prev_state, state)
segment.add_transition(transition)
timeline.add_segment(segment)
return timeline
def create_transition(self, from_state, to_state):
"""Create transition between two states"""
# Analyze differences
differences = self.analyze_state_differences(from_state, to_state)
# Determine transition type
transition_type = self.determine_transition_type(differences)
# Create transition
transition = Transition(
from_state=from_state,
to_state=to_state,
type=transition_type,
duration=self.calculate_transition_duration(differences),
elements_affected=differences.affected_elements
)
return transition
🧮 4D Constraint Solver¶
Multi-Objective Optimization¶
The 4D Constraint Solver optimizes both spatial (3D) and temporal constraints to create optimal motion graphics.
class ConstraintSolver4D:
def __init__(self):
self.spatial_solver = SpatialConstraintSolver()
self.temporal_solver = TemporalConstraintSolver()
self.multi_objective_optimizer = MultiObjectiveOptimizer()
def solve_timeline(self, states, transitions, constraints):
"""Solve 4D constraint problem (3D space + time)"""
# Build temporal graph
temporal_graph = self.build_temporal_graph(states, transitions)
# Apply constraints
for constraint in constraints:
temporal_graph.add_constraint(constraint)
# Multi-objective optimization
objectives = [
self.objective_visual_coherence,
self.objective_communication_effectiveness,
self.objective_technical_constraints,
self.objective_historical_performance
]
optimized_timeline = self.multi_objective_optimizer.optimize(
temporal_graph, objectives
)
return optimized_timeline
def build_temporal_graph(self, states, transitions):
"""Build temporal constraint graph"""
graph = TemporalGraph()
# Add state nodes
for state in states:
graph.add_node(state.id, {
'timestamp': state.timestamp,
'duration': state.duration,
'elements': state.elements
})
# Add transition edges
for transition in transitions:
graph.add_edge(
transition.from_state.id,
transition.to_state.id,
{
'type': transition.type,
'duration': transition.duration,
'constraints': transition.constraints
}
)
return graph
def objective_visual_coherence(self, timeline):
"""Optimize for visual coherence"""
coherence_score = 0
for segment in timeline.segments:
# Calculate visual consistency
consistency = self.calculate_visual_consistency(segment)
coherence_score += consistency
return coherence_score / len(timeline.segments)
def objective_communication_effectiveness(self, timeline):
"""Optimize for communication effectiveness"""
effectiveness_score = 0
for segment in timeline.segments:
# Calculate information clarity
clarity = self.calculate_information_clarity(segment)
effectiveness_score += clarity
return effectiveness_score / len(timeline.segments)
⏱️ Timeline Optimizer¶
Graph-Based Timeline Optimization¶
The Timeline Optimizer uses graph algorithms to optimize temporal constraints and sequencing.
class TimelineOptimizer:
def __init__(self):
self.graph_algorithms = GraphAlgorithms()
self.temporal_analyzer = TemporalAnalyzer()
self.sequence_optimizer = SequenceOptimizer()
def optimize_timeline(self, timeline, constraints):
"""Optimize timeline using graph algorithms"""
# Build timeline graph
timeline_graph = self.build_timeline_graph(timeline)
# Apply temporal constraints
constrained_graph = self.apply_temporal_constraints(
timeline_graph, constraints
)
# Find optimal sequence
optimal_sequence = self.graph_algorithms.find_optimal_sequence(
constrained_graph
)
# Optimize timing
optimized_timing = self.optimize_timing(optimal_sequence)
return optimized_timing
def build_timeline_graph(self, timeline):
"""Build graph representation of timeline"""
graph = TimelineGraph()
# Add nodes for each timeline element
for element in timeline.elements:
graph.add_node(element.id, {
'start_time': element.start_time,
'duration': element.duration,
'dependencies': element.dependencies,
'priority': element.priority
})
# Add edges for dependencies
for element in timeline.elements:
for dependency in element.dependencies:
graph.add_edge(dependency, element.id, {
'type': 'dependency',
'min_gap': 0
})
return graph
def apply_temporal_constraints(self, graph, constraints):
"""Apply temporal constraints to graph"""
constrained_graph = graph.copy()
for constraint in constraints:
if constraint.type == 'timing':
self.apply_timing_constraint(constrained_graph, constraint)
elif constraint.type == 'sequence':
self.apply_sequence_constraint(constrained_graph, constraint)
elif constraint.type == 'attention':
self.apply_attention_constraint(constrained_graph, constraint)
return constrained_graph
✅ Quality Validator¶
Motion Graphics Quality Assurance¶
The Quality Validator ensures that generated motion graphics meet quality standards and brand compliance.
class QualityValidator:
def __init__(self):
self.brand_compliance = BrandComplianceChecker()
self.technical_validator = TechnicalValidator()
self.accessibility_checker = AccessibilityChecker()
def validate_motion_graphics(self, motion_graphics):
"""Validate motion graphics quality"""
validation_results = {
'overall_score': 0,
'checks': {},
'recommendations': []
}
# Brand compliance check
brand_score = self.brand_compliance.check_compliance(motion_graphics)
validation_results['checks']['brand_compliance'] = brand_score
# Technical quality check
technical_score = self.technical_validator.validate_technical_quality(motion_graphics)
validation_results['checks']['technical_quality'] = technical_score
# Accessibility check
accessibility_score = self.accessibility_checker.check_accessibility(motion_graphics)
validation_results['checks']['accessibility'] = accessibility_score
# Temporal flow check
temporal_score = self.validate_temporal_flow(motion_graphics)
validation_results['checks']['temporal_flow'] = temporal_score
# Calculate overall score
validation_results['overall_score'] = self.calculate_overall_score(validation_results['checks'])
# Generate recommendations
validation_results['recommendations'] = self.generate_recommendations(validation_results['checks'])
return validation_results
def validate_temporal_flow(self, motion_graphics):
"""Validate temporal flow and pacing"""
score = 0
# Check for appropriate pacing
pacing_score = self.check_pacing(motion_graphics.timeline)
score += pacing_score * 0.3
# Check for visual continuity
continuity_score = self.check_visual_continuity(motion_graphics.timeline)
score += continuity_score * 0.3
# Check for information density
density_score = self.check_information_density(motion_graphics.timeline)
score += density_score * 0.4
return score
def check_accessibility(self, motion_graphics):
"""Check accessibility compliance"""
score = 0
# Check for motion sensitivity
motion_score = self.check_motion_sensitivity(motion_graphics)
score += motion_score * 0.4
# Check for epilepsy triggers
epilepsy_score = self.check_epilepsy_triggers(motion_graphics)
score += epilepsy_score * 0.3
# Check for color contrast
contrast_score = self.check_color_contrast(motion_graphics)
score += contrast_score * 0.3
return score
These processing modules form the core intelligence of the Animation Designer Bot, transforming creative concepts into professional motion graphics through sophisticated algorithms and optimization techniques.