🔍 Computer Vision Hybrid Approach¶
🎯 Overview¶
The Animation Designer Bot uses a breakthrough hybrid computer vision approach that combines dual-rendering from After Effects with deterministic computer vision methods to achieve pixel-perfect ground truth without the computational overhead of deep learning.
🌈 Dual-Rendering Methodology¶
Core Concept¶
Instead of relying on complex deep learning models, the system uses a dual-rendering approach from After Effects:
- Normal Render: Standard output for final video
- Color-Coded Render: Elements tagged with specific colors for automatic identification
- Deterministic Analysis: Classical CV methods applied to both renders
Color Encoding System¶
COLOR_ENCODING = {
# Text Elements
(255, 0, 0): "texto_principal", # Red
(255, 255, 0): "texto_secundario", # Yellow
(255, 128, 0): "texto_descriptivo", # Orange
# Interactive Elements
(0, 255, 0): "cta_button", # Green
(0, 255, 128): "link_interactivo", # Light Green
# Branding Elements
(0, 0, 255): "logo_principal", # Blue
(128, 0, 255): "logo_secundario", # Purple
# Graphic Elements
(0, 255, 255): "icono", # Cyan
(255, 0, 255): "decoracion", # Magenta
# Background Elements
(128, 0, 0): "background", # Brown
(0, 128, 0): "imagen_producto", # Dark Green
(0, 0, 128): "frame_border", # Dark Blue
# Special Elements
(128, 128, 0): "precio_oferta", # Olive
(128, 0, 128): "countdown_timer", # Dark Purple
(0, 128, 128): "progress_indicator", # Teal
}
🔍 Deterministic Computer Vision Pipeline¶
1. Ground Truth Extraction¶
class GroundTruthExtractor:
def extract_from_dual_render(self, normal_video, coded_video):
"""Extract pixel-perfect ground truth from color-coded render"""
ground_truth_data = []
for frame_idx, (normal_frame, coded_frame) in enumerate(
zip(self.extract_frames(normal_video),
self.extract_frames(coded_video))):
# Extract elements from color-coded frame
elements = self.extract_elements_from_coded(coded_frame)
# Map to normal frame coordinates
mapped_elements = self.map_to_normal_frame(elements, normal_frame)
frame_data = {
"frame_index": frame_idx,
"timestamp": frame_idx / 30.0, # Assuming 30fps
"elements": mapped_elements,
"normal_frame": normal_frame,
"coded_frame": coded_frame
}
ground_truth_data.append(frame_data)
return ground_truth_data
2. Color Segmentation¶
class ColorSegmentator:
def __init__(self, tolerance=10):
self.tolerance = tolerance
def segment_by_color(self, image, target_color):
"""Exact segmentation by RGB color"""
# Create mask for specific color
lower = np.array([max(0, c - self.tolerance) for c in target_color])
upper = np.array([min(255, c + self.tolerance) for c in target_color])
mask = cv2.inRange(image, lower, upper)
# Find contours
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
return self.contours_to_regions(contours)
def extract_all_elements(self, coded_image):
"""Extract all elements from color-coded image"""
elements = {}
for color, element_type in COLOR_ENCODING.items():
regions = self.segment_by_color(coded_image, color)
elements[element_type] = regions
return elements
3. Deterministic Feature Analysis¶
class DeterministicAnalyzer:
def analyze_region_characteristics(self, region):
"""Analyze features without ML"""
# Geometric characteristics
area = cv2.contourArea(region.contour)
perimeter = cv2.arcLength(region.contour, True)
# Bounding box
x, y, w, h = cv2.boundingRect(region.contour)
aspect_ratio = w / h
# Shape characteristics
hull = cv2.convexHull(region.contour)
hull_area = cv2.contourArea(hull)
solidity = area / hull_area if hull_area > 0 else 0
# Position characteristics
image_h, image_w = region.image_shape
center_x, center_y = x + w/2, y + h/2
position_features = {
"relative_x": center_x / image_w,
"relative_y": center_y / image_h,
"is_center": 0.3 < center_x/image_w < 0.7 and 0.3 < center_y/image_h < 0.7,
"is_corner": center_x/image_w < 0.2 or center_x/image_w > 0.8 or
center_y/image_h < 0.2 or center_y/image_h > 0.8
}
return {
"geometry": {
"area": area,
"perimeter": perimeter,
"aspect_ratio": aspect_ratio,
"solidity": solidity,
"relative_area": area / (image_w * image_h)
},
"position": position_features
}
4. Rule-Based Classification Engine¶
class DeterministicRulesEngine:
def __init__(self):
self.rules = [
# Text rules
Rule("texto_largo",
lambda f: f["geometry"]["aspect_ratio"] > 3.0 and
f["geometry"]["relative_area"] < 0.1),
# Button rules
Rule("boton_probable",
lambda f: 1.5 < f["geometry"]["aspect_ratio"] < 4.0 and
0.01 < f["geometry"]["relative_area"] < 0.05 and
f["position"]["is_center"]),
# Logo rules
Rule("logo_probable",
lambda f: 0.8 < f["geometry"]["aspect_ratio"] < 1.5 and
f["position"]["is_corner"] and
f["geometry"]["relative_area"] < 0.03),
]
def classify_region(self, features):
"""Classify region using deterministic rules"""
classifications = []
for rule in self.rules:
if rule.condition(features):
classifications.append({
"type": rule.name,
"confidence": rule.confidence,
"rule_fired": rule.name
})
return classifications
🧠 Pattern Extraction for WFC¶
Wave Function Collapse Integration¶
The system extracts patterns from analyzed motion graphics to feed into a Wave Function Collapse (WFC) system for procedural generation:
class WFCPatternExtractor:
def extract_spatial_patterns(self, ground_truth_data):
"""Extract spatial patterns for WFC system"""
patterns = {
"element_relationships": [],
"spatial_constraints": [],
"timing_patterns": [],
"transition_patterns": []
}
for frame_data in ground_truth_data:
# Extract element relationships
relationships = self.analyze_element_relationships(frame_data["elements"])
patterns["element_relationships"].extend(relationships)
# Extract spatial constraints
constraints = self.extract_spatial_constraints(frame_data["elements"])
patterns["spatial_constraints"].extend(constraints)
return patterns
def extract_temporal_patterns(self, ground_truth_data):
"""Extract temporal patterns for animation generation"""
temporal_patterns = {
"entry_animations": [],
"exit_animations": [],
"transition_types": [],
"timing_profiles": []
}
# Analyze frame-to-frame changes
for i in range(len(ground_truth_data) - 1):
current_frame = ground_truth_data[i]
next_frame = ground_truth_data[i + 1]
changes = self.analyze_frame_changes(current_frame, next_frame)
temporal_patterns["transition_types"].extend(changes)
return temporal_patterns
📊 Performance Metrics¶
Expected Performance Characteristics¶
| Metric | Target | Method |
|---|---|---|
| Overall Precision | >90% | Validation vs ground truth |
| Element Recall | >85% | Detection of known elements |
| Processing Speed | >30 FPS | Real-time on standard CPU |
| False Positives | <5% | Incorrect classifications |
Advantages of Hybrid Approach¶
✅ Technical Benefits¶
- Perfect Ground Truth: Pixel-exact correspondence between elements
- High Computational Efficiency: Deterministic methods vs deep learning
- Real-time Processing: Low memory consumption and fast execution
- Complete Interpretability: Explicit and auditable rules
✅ Business Benefits¶
- Cost-Effective: No GPU requirements for inference
- No Training Costs: No massive training data requirements
- Simplified Maintenance: Easy debugging and adjustment
- Scalable: Can process thousands of examples efficiently
🚀 Implementation Pipeline¶
Phase 1: Infrastructure Setup¶
- Dual-rendering system in After Effects
- Ground truth extraction pipeline
- Basic computer vision pipeline
Phase 2: Deterministic Methods¶
- Color segmentation implementation
- Geometric feature analysis
- Basic rule engine
Phase 3: Template Matching¶
- Template library creation
- Hierarchical matching system
- Rule integration
Phase 4: Validation and Optimization¶
- Automated validation system
- Parameter optimization
- Performance metrics
Phase 5: WFC Integration¶
- Pattern extraction for WFC
- Integration with main system
- End-to-end testing
🔧 Technical Requirements¶
Software Dependencies¶
- OpenCV: Computer vision operations
- scikit-image: Image analysis
- NumPy/SciPy: Array processing
- Pillow: Image manipulation
- After Effects: Dual-rendering setup
Hardware Requirements¶
- CPU: Standard multi-core processor
- Memory: 8GB+ RAM for processing
- Storage: SSD for fast I/O operations
- GPU: Optional for template matching acceleration
This hybrid approach combines the precision of automated ground truth with the efficiency of deterministic computer vision methods, creating a robust and scalable solution for motion graphics analysis.